二、心电产生的原理
[b](一)心肌细胞的极化状态和静息电位[/b]
心肌细胞在静息状态下,细胞膜外带正电荷,膜内带同等数量的负电荷,这种电荷稳定的分布状态称为极化状态(图14-1-2)。通过实验,测得极化状态的单一心肌细胞内电位为-90mV,膜外为零。这种静息状态下细胞内外的电位差称为静息电位(restingpotential)这种稳恒状态就称极化状态。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue108.jpg[alt]极化状态图[/alt][/img]
图14-1-2 极化状态图
极化状态时静息电位的恒定,有赖于细胞的代谢活动,细胞内外钾离子及钠离子浓度的比值以及细胞膜对钾、钠、钙、蛋白质、氯离子等具有不同的通透性。在静息状态下,细胞内钾离子浓度约为细胞外钾离子浓度的30倍,相反细胞外钠离子浓度约为细胞内钠离子浓度的15倍。至于阴离子,细胞内液以蛋白阴离子的浓度为高,而在细胞外液则以氯离子浓度为高。由于细胞膜对钾离子的通透性远超超过对钠离子和通透性,细胞内钾离子浓度又高于细胞外数十倍,钾离子便会不断地从细胞内向细胞外渗出。当钾离子外渗时,氯离子亦随之外渗,但因细胞膜本身带有负电荷,氯离子渗出受阻,就使较多的钾离子渗出到膜外,而未能渗出的游离型阴离子(主要是蛋白阴离子,其次是氯离子)留在膜内,使膜内电位显著低于膜外。膜内负电位的大小和静息时钾离子外渗的多少有密切关系,钾离子外渗越多,留在膜内的阴离子也越多,因而膜内负电位也越大,同时由于膜内带负电荷的阴离子越来越多,吸引着膜内钾离子(静电力作用),使膜内钾离子逐渐不能再向外转移,因而使膜内电位维持在-90mV的水平上,形成了静息电位。
[b](二)心肌细胞的除极、复极过程和动作电位[/b]心肌细胞在兴奋时所发生的电位变化称为动作电位,即心肌细胞的除极和复极过程(图14-1-3)。分为去极化的0相和复极化的1、2和3相。4相为静息期。
1.0相(去极化期):心肌细胞受刺激时钠通道开放,细胞膜对Na[SB]+[/SB]的通透性急骤升高,使细胞外液中的大量Na[SB]+[/SB][SB][/SB]渗入细胞内,膜内电位从静息状态的-90mV迅速上升到+30mV,形成动作电位的上升支即0相,0相非常短暂,仅点1-2ms。这种极化状态的消除称为除极(depolarization)。相当于心电图QRS波群的前半。
2.1 相(早期快速复极相):心肌细胞经过除极后,又逐渐恢复负电位称为复极,动作电位到达顶峰后,立即开始复极,在复极开始到达零电位形成1相。因为此时Na[SB]+[/SB]的内流已锐减,细胞膜对K[SB]+[/SB]和Cl[SB]-[/SB]的通透性增大,引起K[SB]+[/SB]的外流和Cl[SB]-[/SB]的内流,其中K[SB]+[/SB]外流是主要的,使膜内电痊快速自+20mV下降至0线形成1相。约占10ms。相当心电图QRS波群的后半部。
3.2相(平台期):为缓慢复极化阶段。表现为膜内电位下降速度大减,停滞于接近零电位的等电位状态,形成平台。此期持续时间较长,约占100~150ms,在膜电位低于-55~-40mV时,膜上的钙通道激活,使细胞外Ca[SB]++[/SB]缓慢内流,同时又有少量K[SB]+[/SB]外流,致使膜内电位保持在零电位附近不变。相当于心电图的S-T段。
4.3 相(快速复极末相):此期复极过程加速,膜内电位较快下降至原来的膜电位水平,主要由于膜对K[SB]+[/SB]的通透性大大增高,细胞外K[SB]+[/SB]浓度较低促使K[SB]+[/SB]快速外流。相当心电图的T流。
5.4 相(静息相):通过细胞膜上的钠-钾泵活动加强,使细胞内外的离子浓度差得到恢复至静息状态水平。相当于心电图T波的等电位线。
4 相的开始相当于复极过程完毕,心室舒张期由此开始。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue109.jpg[alt]心肌细胞除极复极时电位变化与离子活动心电图关系示意图[/alt][/img]
图14-1-3心肌细胞除极复极时电位变化与离子活动心电图关系示意图
A.心肌细胞除极与复极过程中的电位曲线;a.零电位线b.静息电位c.动作电位开始
B.相应的心电图
0位相:相当于心电图的R波;1位相:相当于心电图的J点
2位相:相当于心电图的S T段;3位相:相当于心电图的T波
4位相:相当于心电图T波后的静息电位
C.心肌细胞膜内外在不同位相时的离子变化
[b](三)容积导电与电偶学说[/b]
心肌细胞除极与复极过程在临床心电图上通常用电偶学说来说明。由两个电量相等,距离很近的正负电荷所组成的一个总体,称为电偶。正电荷称做电偶的电源,负电荷称为电偶的电穴,其连线称为电偶轴,电偶轴的方向是由电穴指向电源,两极间连线的中点称为电偶中心。当一个心肌细胞的甲端受刺激而首先除极,由于Na[SB]+[/SB]的内流使此处膜内变为正电位,膜外变为负电位(图14-1-4B),乙端仍保持膜外为正电位、膜内负电位的极化状态,使同一个细胞膜外的甲乙两端出现了电位的差别。甲端为负电荷(电穴),乙端为正电荷(电源),二者形成电偶,产生电流。电流的方向由电源流向电穴。若在乙端(面对电源)置一探查电极,即可描记出向上的波,反之,在甲端则描记出向下的波。随着除极波的扩展,整个心肌细胞全部除极,细胞膜内外分别均匀地聚集正、负电荷,细胞膜外的电位差消失,无电流存在,则记录为一平线(图14-1-4 C)。心肌细胞复极时,先除极的甲端首先复极,恢复到极化水平,其膜外聚集正电荷,未复极的乙端膜外仍聚集负电荷,复极端为电极,恢复到极化水平,其膜外聚集正电荷,未复极的乙端膜外仍聚集负电荷,复极端为电源,未复极端为电穴,二者再次形成电偶,产生电流,电流方向仍为电源流向电穴,与除极时方向相反,甲端电极描记为正波,乙端描记为负波(图14-1-4 C)。整个心肌细胞恢复极化状态后,电偶消失,无电流产生,再次描记为一平线(图14-1-4 E)。
心肌细胞在除极与复极的过程中,形成电偶,产生电流,在每一瞬间都将传播到整个体液内(图14-1-5)。这种现象和一束肌纤维放在巨盆盐水内,不断产生电偶作用于周围的情况完全相似,这种导电的方式称为容积导电。人体亦可看作是容积导体,心脏处于这一导体之中。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue110.jpg[alt]心肌细胞除极与复极时电偶的形成[/alt][/img]
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue111.jpg[alt]心肌细胞除极与复极时电偶的形成[/alt][/img]
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue112.jpg[alt]心肌细胞除极与复极时电偶的形成[/alt][/img]
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue113.jpg[alt]心肌细胞除极与复极时电偶的形成[/alt][/img]
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue114.jpg[alt]心肌细胞除极与复极时电偶的形成[/alt][/img]
图14-1-4心肌细胞除极与复极时电偶的形成
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue115.jpg[alt]电位在容积导电体内的正负电场示意图[/alt][/img]
图14-1-5电位在容积导电体内的正负电场示意图
在容积导体中各处都有强弱不同的电流在流动着,因而导体中各点存在着不同的电位差(图14-1-6),通过电偶中心可作一垂直平面,因面上各点与正负两极距离相等,故在此平面上各点的电位均等于零,称为电偶电场的零电位面,零电位面把电偶的电场分为正、负两个半区。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue116.jpg[alt]电位在容积导体中产生的电位分布示意图[/alt][/img]
图14-1-6电位在容积导体中产生的电位分布示意图
容积导体中任一点的电位与以下三个因素有关。
1.某点的电位和电偶的动势成正比。电偶的电动势越大,该点的电位越高。
2.某点的电位和该点与电偶中心距离的平方成反比。距离越远,电位的绝对值越低。
3.某点的电位与该点方位角θ的余弦成正比。角度越大,电位越低,角度越小,电位越高。
上述三个因素可以用下列公式表示
V=E.cosθ/r[SB]2[/SB]
V代表容积导体中任一点电位,E代表电偶电动势,r代表该点到电偶中心的距离,cosθ是方位角θ的余弦(图14-1-7)。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/wulizhenduanxue/wulizhenduanxue117.jpg[alt]容积导体中某点电位与方位角的关系示意图[/alt][/img]
图14-1-7容积导体中某点电位与方位角的关系示意图
a 当θ=0°时,cosθ=1,此时 a点电位为+E.波形向上,电位最高; b θ= 30°时, cos 30°= 0.866, b点电位为 +0.866E。波形向上,电位稍低;cθ=60°时, cos60=0.500, c点电位为 +0.5E; dθ=90°时, cos90 =0, d点电位为零。同理,e、 f、 g 各点的电位分别为-0.5E、 -0.866E及 -E