(一)MHC对免疫应答遗传控制研究的基本条件
1.人工合成多肽抗原 化学合成多肽抗原主要有以下两类:
(1)合成分枝多肽抗原:它是以线状的多聚赖氨酸(L)联上多聚丙氨酸(A)的侧链,形成A-L骨架结构,然后再在丙氨酸链上偶联不同的氨基酸,形成具有不同抗原特异性的分枝多肽抗原。最常用的是(T,G)-A-L,(H,G)-A-L和(φ,G)-A-L等(图6-14)。抗原特异性由末端氨基酸所决定,侧枝和主干起载体的作用。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/xibaohefenzimianyixue/xibaohefenzimianyixue066.jpg[alt]MHC与胸腺的选择作用[/alt][/img]
图6-13 MHC与胸腺的选择作用
(2)线状多肽抗原:这是几种氨基酸按不同比例和数量结合而成的线状多肽,具有较强的抗原性,如GLφ等。单种氨基酸组成的均一多肽抗原性很弱,但偶联上半抗原后则是很好的免疫原,例如多聚赖氨酸(PLL)与DNP偶联形成的DNP-PLL被广泛用于豚鼠免疫应答遗传控制的研究。
2.同类系小鼠(congenic mice)是遗传北景完合相同,只是所需研究的那个基因不同的小鼠。建立同类系小鼠是诺贝尔获得者Snell对免疫遗传学作用出的突出贡献。有了同类系小鼠和人工合成多肽抗原,就可以深入研究免疫应答的基因控制以及与MHC的关系。同类系小鼠的培育的方法见图6-15。
首先近交系(inbredstrain)A品系小鼠与另一个近交系B品系小鼠进行交配,A品系MHC是a/a纯合(homozygous)的,B品系MHC是b/b纯合的。A与B品系杂交的子一代(F1)全部是a/b杂合状态的。然后将F1小鼠与亲本A品系进行回交(backcross),其子代一半为a/a,另一半为a/b,a/b杂合状态小鼠的皮片移植到A品系小鼠后迅速被排斥,而a/a子代小鼠的皮片移植到A品系小鼠后并不迅速被排斥。将通过皮片移植后发生迅速排所鉴定的a/b杂合小鼠又与A品系小鼠进行回交,其子代一半为a/a,另一半为a/b,再用上述皮片移植排斥反应的方法鉴定出a/a或a/b,将a/b杂合不再与A品系小鼠进行回交。如此继续20代后,a/b杂合小b等位基因仍然保留,但原来B品系小鼠中其它的遗传座位都消失了,正如连续稀释(serial dilution)一样,F1小鼠保留了B品系基因的50%,回交后第一代平均只保留了B品系基因的25%,这样经过20次回交后除了保留B品系的MHC等位基因(b)以外,其余B品系的基因(非MHC基因)都消失。也就是说,经过如此20代回交后a/b小鼠,除了第17号染色体上的MHC是a/b杂合以外,其余的遗传背景(除17号染色体MHC以外和其余39对染色体)均与A品系相同。将经过20代回交的a/b小鼠进行品种间杂交(interbreed)或称史妹交配,其子代的MHC基因25%是a/a纯合,25%是b/b纯合,50%是a/b杂合的。其中b/b纯合小鼠皮片移植的A品系小鼠后即发生迅速的排斥。用b/b纯合小鼠进行品种间杂交,培育出一个新的品系即MHC基因位点上与B品系相同,而其它所有的遗传背景与A品系相同,我们可称作这个品系小鼠与A品系是同类系(congenic to strain A),或者叫做在A遗传背景的B MHC。常用同类系小鼠单体型见表6-7。
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/xibaohefenzimianyixue/xibaohefenzimianyixue067.jpg[alt]合成分枝多肽抗原示意[/alt][/img]
图6-14 合成分枝多肽抗原示意
注:(T,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸
(H,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸
(φ,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸
L:L型,D:D型
3.H-2内重组株 通过不同的同类系杂交,根据交换重组定律,在杂交后代中选择新的H-2内重组体(interH-2recombinants)。不同的重组株在H-2内的一些基因位点具有不同的等位基因,即H-2单体型(haplotype)不同。
例如品系A,B10.A单体型为a,它是由H-2k和H-2d两个双亲单体型的I-E亚区和S区之间发生交换重组而产生(表6-8)。H-2内重组株(举例)参见表6-9。
表6-7 常用同类系小鼠的单体型(标准品系,type strains)
品系 | 单体型 | K | I-A | S | D |
B10(C57BL/10) | H-2[SB]b[/SB] | b | b | b | b |
B57BL/6 | H-2[SB]b[/SB] | b | b | b | b |
DBA/2 | H-2[SB]d[/SB] | d | d | d | d |
Balb/c | H-2[SB]d[/SB] | d | d | d | d |
B10.D2 | H-2[SB]d[/SB] | d | d | d | d |
C3H | H-2[SB]k[/SB] | k | k | k | k |
CBA | H-2[SB]k[/SB] | k | k | k | k |
B10.BR | H-2[SB]k[/SB] | k | k | k | k |
[img]https://baike.zhuayao.net/Uploads/zyzy/lilunshuji/xibaohefenzimianyixue/xibaohefenzimianyixue068.jpg[alt]同类系小鼠培育的方法[/alt][/img]
图6-15 同类系小鼠培育的方法
表6-8 A.B10.AH-2内重组株的产生
单体型 | K | I-A | I-E | S | G | D |
亲代1 | k | k | k | k | k | k | k |
亲代2 | d | d | d | d | d | d | d |
A.B10·A | a | k | k | k | d | d | d |
表6-9 H-2内重组株(举例)
品系 | 单体型 | 双亲单体型 | K | I区 | S | G | D |
A | E |
A.B10.A | a | k/d | k | k | k | d | d | d |
A.AL | a1 | k/d | k | k | k | k | k | d |
C3H.OL | o1 | d/k | d | d | d | k | k | k |
C3H.OH | o2 | d/k | d | d | d | d | d | k |
B10.A(4R) | h4 | a/b | k | k | b | b | b | b |
B10.AM | h5 | k/b | k | k | k | k | k | b |
B10.A(3R) | i3 | b/a | b | b | k | d | d | d |
B10.A(5R) | i5 | b/a | b | b | k | d | d | d |
A.TL | t1 | s/al | s | k | k | k | k | d |
A.Th,B10.S(7R) | t2 | s/a | s | s | s | s | s | d |
BSVS | ts | s/a2 | s | s | s | d | d | d |
B10.M(17R) | ag1 | s/f | k | k | k | d | d | f |
B10.M(11R) | ap1 | s/f | f | f | f | f | f | d |